skip to main content


Search for: All records

Creators/Authors contains: "Yi, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study presents the first numerical simulations of seeded clouds over the Snowy Mountains of Australia. WRF-WxMod, a novel glaciogenic cloud-seeding model, was utilized to simulate the cloud response to winter orographic seeding under various meteorological conditions. Three cases during the 2018 seeding periods were selected for model evaluation, coinciding with an intensive ground-based measurement campaign. The campaign data were used for model validation and evaluation. Comparisons between simulations and observations demonstrate that the model realistically represents cloud structures, liquid water path, and precipitation. Sensitivity tests were performed to pinpoint key uncertainties in simulating natural and seeded clouds and precipitation processes. They also shed light on the complex interplay between various physical parameters/processes and their interaction with large-scale meteorology. Our study found that in unseeded scenarios, the warm and cold biases in different initialization datasets can heavily influence the intensity and phase of natural precipitation. Secondary ice production via Hallett–Mossop processes exerts a secondary influence. On the other hand, the seeding impacts are primarily sensitive to aerosol conditions and the natural ice nucleation process. Both factors alter the supercooled liquid water availability and the precipitation phase, consequently impacting the silver iodide (AgI) nucleation rate. Furthermore, model sensitivities were inconsistent across cases, indicating that no single model configuration optimally represents all three cases. This highlights the necessity of employing an ensemble approach for a more comprehensive and accurate assessment of the seeding impact.

    Significance Statement

    Winter orographic cloud seeding has been conducted for decades over the Snowy Mountains of Australia for securing water resources. However, this study is the first to perform cloud-seeding simulation for a robust, event-based seeding impact evaluation. A state-of-the-art cloud-seeding model (WRF-WxMod) was used to simulate the cloud seeding and quantified its impact on the region. The Southern Hemisphere, due to low aerosol emissions and highly pristine cloud conditions, has distinctly different cloud microphysical characteristics than the Northern Hemisphere, where WRF-WxMod has been successfully applied in a few regions over the United States. The results showed that WRF-WxMod could accurately capture the clouds and precipitation in both the natural and seeded conditions.

     
    more » « less